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1.Introduction

Surveys are ubiquitous in social science research, including economics. Data on public
health, unemployment, and inflation all rely on large-scale surveys. However, there is in-
creasing concern that the quality of our surveys is declining due to nonresponse bias (e.g.,
Meyer, Mok and Sullivan (2015)). Nonresponse bias occurs when the response rates are
different depending on the outcome variable. An example is when unemployed individuals
are more likely to respond to a survey on employment than employed individuals. Extensive
literature has been dedicated to increasing response rates, controlling for nonresponse bias,
and imputing missing data: Groves et al. (2002) is a 29 chapter book covering the vari-
ous aspects of nonresponse, and the entirety of volume 645 of The Annals of the American
Academy of Political and Social Science is dedicated to nonresponse (Kreuter, 2013).

Of all of the possible causes of nonresponse bias, the most difficult one to address is
when the variable of interest has a direct casual effect on the propensity to respond. This is
also called “not missing at random” (Groves, 2006). My paper focuses on this type of bias,
and I provide a statistical test to detect the presence and sign of nonresponse bias when data
is not missing at random.

I write down a model for nonresponse bias in the context of estimating the prevalence
rate of a certain binary trait of interest D (e.g., depression) in a finite population. I define
nonresponse bias as the difference between the probability that someone responds to the
survey when they have that trait of interest and when they do not (i.e., P (R = 1|D =
1)− P (R = 1|D = 0)). The model is consistent with the widely known fact that increasing
response rates do not necessarily result in lower nonresponse bias. My model leverages
the empirical relationship between the observed prevalence rate of D in the survey and
response rates. I argue that this relationship has different interpretations when we compare
within a survey (i.e., different waves of the same survey) versus when we compare across
surveys (e.g., two different surveys on depression in America). The first comparison likely
holds the propensity to respond in different groups constant, and the second holds the
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underlying value P (D = 1) constant. By examining the relationship between response rates
and our key variable of interest within a survey, we can uncover the sign of nonresponse
bias. If individuals are more likely to respond to surveys when they are unemployed, and
unemployment exogenously increases, then we would observe higher response rates as people
move into the unemployed group and the average propensity to respond goes up. I show
theoretically that a linear regression of response rates on the aggregated prevalence rate of
the trait of interest will have the same sign as the nonresponse bias and confirm this through
a simulation.

Previous work measuring nonresponse bias usually compares survey estimates with some
true aggregated value (e.g., surveyed vaccination rates v. CDC vaccination data, surveyed
outcome in election v. actual election outcome). For example, Meng (2018) explored the
effect of the correlation between responding to a survey and the outcome variable of interest—
what he calls the data defect correlation (ddc)—and how it affects the bias of an estimated
mean. One measure of how the ddc affects an estimate is effective sample sizes: a sample
size for a simple random survey that will produce the same MSE as the survey in question.
Meng applies his model to surveys used in the 2016 Presidential election. He finds that the
effective sample size of all election surveys, which covered more than 3.2 million individuals,
is a mere 400.

As Meng notes, the data defect correlation cannot be calculated using only the survey
data and requires knowledge of the true value of our estimand. The main contribution of
this paper is that my methods allow me to estimate the sign (although not the magnitude)
of nonresponse bias directly from survey data.

I apply my model to the Census Household Pulse Survey (HPS), using measured anxiety,
depression, and vaccination rates as my outcome variables. Bradley et al. (2021) showed that
the HPS overestimates vaccination rates in the early days of the vaccination campaign by
comparing vaccination rates in the survey with vaccination rates reported by the CDC.
Dobson et al. (2022) showed that HPS suggests that there is large increase the depression
and anxiety rates between 2019 and 2020. However, this change in bad mental health is
absent in two other nationally representative surveys—NHIS and BRFSS—which have much
higher response rates. Both papers suggest that there may be nonresponse bias in HPS as
it relates to these outcome variables. Under some assumptions, I find that having anxiety
increases one’s propensity to respond to surveys and that being vaccinated reduces one’s
propensity to respond.

2.An Illustrative Model

2.1 Setup

The surveyor wants to learn about the proportion of a population with a certain trait.
For each individual in the population, I define two Bernoulli (i.e., binary) random variables
D and R. D represents the key trait of interest (in the case of Dobson et al. (2022), the
trait is depression), and R represents whether or not an individual will respond to the
survey, where P (R = 1) may vary based on D. This gives us four types of individuals
(D = 1 ∩ R = 1, D = 1 ∩ R = 0, etc.). The surveyor surveys n individuals, of which
n ·P (R = 1) are expected to respond. I assume that these individuals are selected randomly
from the population, is representative, and that there are no measurement errors. I define
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d = d1, d2...dn to indicate if individual i has depression and r = r1, r2...rn to indicate whether
individual i responds to the survey. I assume that (di, ri) is i.i.d.. This is an extremely
strong assumption, since it is equivalent to assuming that everyone has the same P (D),
P (R = 1|D = 1) and P (R = 1|D = 0). In other words, the causal effect on the propensity
to respond when one moves from D = 0 to D = 1 is uniform across the population. This is
an unrealistic assumption, but it allows us to solve the model cleanly and illustrate its key
ideas.

The surveyor’s estimand is θ = P (D = 1), which I will also refer to as the D-incidence
rate in the population. I define b = P (R = 1|D = 1), a = P (R = 1|D = 0), and the observed

response rate R̂ =
∑n

i=1 ri
n

, with E(R̂) = P (R = 1) = bθ + a(1 − θ). The goal of the model
is to find the sign of the nonresponse bias using only the survey data, which I will define as
b − a, the difference in response rates between the group with the trait of interest and the
group without.

The surveyor constructs the following estimator for θ

θ̂ =

∑n
i=1 diri∑n
i=1 ri

(1)

Which is the D-incidence rate among the people who responded. I also call this the “ob-
served” D-incidence rate.

Lemma 1. θ̂
p−→= E[DR]

E[R]
= P (D = 1|R = 1) = bθ

bθ+a(1−θ)
. In other words, θ̂ approaches

P (D = 1|R = 1) with probability one.

Proof. See mathematical appendix.

Lemma 2. θ̂ is an unbiased in the probability limit for θ if and only if b = a. It is positively
biased if b > a.

Proof. See mathematical appendix.

We will rely on the these asymptotic results for the rest of the paper to avoid being
bogged down by issues that arise from ratio estimators.

Note: I just realized that I have this error because I didn’t understand ratio estimators.
I need to go and switch out E[θ̂] for the probability limit of θ̂ everywhere in the paper and
haven’t gotten to it yet. I’ve decided to upload this in the meantime so that the incorrect
version of the paper stays on my website for as little time as possible

2.2 Results

To uncover nonresponse bias from the data, I examine the relationship between R̂ and
θ̂. There are two ways to decompose this change. The first is to consider two different
surveys aiming to study the same phenomenon (e.g.,how many people have been vaccinated
in a given state). In that case, the true underlying θ is the same across the two surveys, but
b and a are different.

To have a more mathematical approach, I define an arbitrary parameter s. I think of s
as the strength of the survey to elicit response, or one can think of s as the inverse of the
cost of taking the survey. I then write a and b as functions of s with ∂a

∂s
> 0 < ∂b

∂s
for all s.
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Thus, when we compare across surveys, the intuition is that θ is constant while s
changes. I take the partial derivative with respect to s to see what happens to the bias of
our estimator as s and response rates increase.

Theorem 1. Without additional assumptions, it is unclear that increasing s reduces bias.
b > a and b − a monotonically decreases as s increases (i.e. ∂b

∂s
− ∂a

∂s
< 0) form sufficient

conditions for bias to decrease as s increases

Proof.

∂E[θ̂ − θ]

∂s
=

∂

∂s

(
b(s)θ

b(s)θ + a(s)(1− θ)

)
=

∂b
∂s
θ[bθ + a(1− θ)]− bθ[ ∂b

∂s
θ + ∂a

∂s
(1− θ)]

[bθ + a(1− θ)]2

=

(
∂b

∂s
θa(1− θ)− ∂a

∂s
(1− θ)bθ

)
× 1

[bθ + a(1− θ)]2

=

(
∂b

∂s
a− ∂a

∂s
b

)
× θ(1− θ)

[bθ + a(1− θ)]2

We can see that the second term is positive and that ∂b
∂s
a − ∂a

∂s
b has unclear sign. Given

additional assumptions, however, we have

∂b

∂s
a− ∂a

∂s
b =

∂b

∂s
a− ∂b

∂s
b+

∂b

∂s
b− ∂a

∂s
b

=
∂b

∂s
(a− b) + b

(
∂b

∂s
− ∂a

∂s

)
Which is negative. In that case, we started with a positive bias (b > a), which decreased
as response rates increased. The case when bias is negative is analogous. If a > b and
∂a
∂s

− ∂b
∂s

< 0, then ∂E[θ̂−θ]
∂s

> 0.

The intuition behind theorem 1 is that increasing survey response rates won’t help if
you’re primarily increasing the response rate within a subgroup with a different D incidence
rate than the population. For example, if b > a and I increase response rates in the group
with D = 1 way more than I do in the group with D = 0, then I would end up with more
bias and not less. Our additional condition states that if the difference in subgroup response
rates decreases as overall response rates increase, the bias would decrease. Wright (2015)
gives an overview of empirical evidence on the (lack of) relationship between nonresponse
rate and nonresponse bias.

Implicit in the parameterization of b and a as functions of s is that for any given level
of s, there can be only one possible b and a value and thus one possible response rate. This
implies that any two surveys with the same observed response rate must have the same b,
a, and θ̂. This assumption is a simplification, and empirical evidence suggests that b and a
vary based on survey protocols (Peytchev, Baxter and Carley-Baxter, 2009) without large
changes in response rates. However, it does not detract from the central message of theorem
1 that higher response rates don’t necessarily lead to less bias.
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There is a perhaps less obvious relationship between observed prevalence and response
rates. If we hold a and b constant, then as θ increases, P (R = 1) will increase if b > a. In
other words, as individuals move from D = 0 to D = 1, the unconditional probability that
someone responds to the survey also increases.

Theorem 2. Holding b and a constant, the expected value of response rates will increase as
the expected value of the observed D-incidence rate increases if and only if b > a.

Proof. We want to know the relationship between two observed variables, R̂ and θ̂, as θ
changes.

∂E[R̂]

∂θ
=

∂E[R̂]

∂E[θ̂]

∂E[θ̂]

∂θ

∂E[R̂]

∂E[θ̂]
=

∂E[R̂]
∂θ

∂E[θ̂]
∂θ

=
b− a

b(bθ+a(1−θ))−bθ(b−a)
[bθ+a(1−θ)]2

=
(b− a)[bθ + a(1− θ)]2

b2θ + ab− abθ − b2θ + abθ

=
b− a

ab
× [bθ + a(1− θ)]2

Which has the same sign as b− a.

Our two theorems imply that, assuming b > a, ∂b
∂s

− ∂a
∂s

< 0, and that b and a are
constant for any given survey, we will find that, comparing across surveys that measure the
same θ, the observed prevalence rates decrease as response rates increases due to a decrease
in bias. On the other hand, comparing within a survey that measures D over time as the true
value θ varies, we will see prevalence rates increase as response rates increase because more
individuals are in the “high response propensity” group, and thus overall response rates go
up.

The most substantial assumption of the model is that the individual data di, ri is dis-
tributed i.d.d.. Suppose that we have a panel dataset and assume that all variation in
expected response rate comes from changes in D. Then, the only variation we capture in
the data would be from individuals that “switch” between D = 1 and D = 0. If the i.i.d.
assumption does not hold, then the average value of b − a among these switchers may be
different from the population as a whole. This is analogous to the case where instrumental
variable regressions capture only the casual effect on compliers.

In appendix B, I incorporate sampling bias into the model in a similar fashion and show
that, as long as the probability that someone gets sampled remains constant throughout
different waves of the survey (i.e., the sample size and population size remain the same),
∂E[R̂]

∂E[θ̂]
will still have the same sign as b − a. However, if there is both sampling bias and

nonresponse bias, the sign of nonresponse bias might not be the same as the overall bias of
θ̂.
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3.Comments and notes

The first idea I had is that we should advocate for whichever agency does unemployment
benefits to ask individuals if they would respond to the CPS when surveyed. This should give
us an estimator b̂ for b in the context of unemployment, which yileds a consistent estimator

for θ: θ̂R̂

b̂
.

The next is thinking about the variation in R̂ and how we can decompose this into
variation in θ versus variation in a and b. The actual theorem just takes the partial holding
a and b constant, but there should be some sort of way to think about R = bθ + (1− θ)a.

And then there’s the sort of causal story that looks at the conditional expectation
function E[R|D]. The pitch I had was that, if being depressed/unemployed/whatever causes
individuals to become more likely to respond to a survey, then whenD exogenously increases,
we should see an increase in R. This is sort of a model-free story? (Even though my model
really isn’t a model but more of a probabilistic identity). How do I sort of incorporate this?

Also, with respect to the regressions themselves, I also need to figure out some way
of thinking about omitted variable bias in this case. Cause some omitted variable could
increase/decrease response rates across the board, or it could differentially increase/decrease
response rates among those who have my trait D or don’t.

Another issue with the regression is that I essentially end up running panel regressions
for everything, and thus this makes me think that maybe the people who switch between
having D = 1 and D = 0 is different from the population. In other words, is there some sort
of local average treatment effect phenomenon here? This i.i.d. assumption I make seems
really strong.

4.Confirming Theory Through Simulations

In order to get variation in θ, we would want a survey that has regional level data, data
across time, or, ideally, both. Then we aggregate at the geographical unit-time unit (GT)
level to get observed response rates and the observed D-incidence rate. An example would
be taking a survey that collects monthly data in the US with information on the state of the
respondent. We can then aggregate on the month-state level.

Using GTs as our units of observation, I apply an ordinary least squares regression of
response rates on observed incidence. Theorem 2 implies that, assuming that there is no
omitted variable bias, the slope of the linear regression will be the same sign as b−a. Before
diving into empirical applications, I first illustrate the validity of this sign estimator through
a simulation.

I start with four possible values for b (0.1, 0.15, 0.2, 0.3) and a values that are identical
to b, b± 0.05, b± 0.1, and b± 0.2, with the restriction that a > 0. The true D incidence rate
of each GT (θ) is drawn from a uniform distribution, with five possible (lower bound,upper
bound) combinations: (0.05,0.1), (0.1,0.12), (0.1,0.15), (0.1,0.2), and (0.2,0.4). This gives
a range of possible variances for the D incidence rate. Drawing randomly from a uniform
distribution also implies that the empirical distribution of the 500 GTs could vary. That
is, we are likely to get some skewed distributions by sheer chance. In the end, I have 120
possible combinations for values of a, b, and range of θ. For each combination, I simulate
500 GTs with a sample size of 2,000 individuals in each GT 1,000 times. Then, I aggregated
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the response rates and observed D incidence rate at the GT-level and run a linear regression
of the response rate on D incidence rate. I record various summary statistics, including
Bootstrap standard errors obtained through 1,000 resampling of the 500 GTs. The raw code
and full set of simulated outputs are available in appendix C, and I present some stylized
findings here.

When the difference between b and a is exactly zero, the percent of slopes statistically
significant at the 5% level is approximately 5% using OLS standard errors. This fits the
definition of p-values. The proportion of slopes with the same sign as b− a and the absolute
value of the slope are positively correlated with the magnitude of b− a and the variance in
θ. In specifications with a large |b − a| and a large variance in θ, the slope almost always
has the same sign as b− a. All slope estimates are correct and statistically significant when
the variation in θ is 0.2-0.4.

The bootstrap standard errors and OLS standard errors are essentially identical (the
correlation between them is 0.99998). I used the 2.5 and 97.5 percentiles of the resampled
regression slopes and defined a slope as “bootstrap-significant” if both percentiles are of the
same sign. Taking the average across different parameters where b ̸= a, the proportion that
is bootstrap significant (0.650) is almost identical to the proportion that is significant based
on conventional OLS standard errors (0.647). The proportion of slopes with the correct
sign, conditional on being significant, is also almost identical between OLS (0.97447) and
bootstrap (0.97432).

Overall, our simulation validates our theoretical model and suggests that when there is
sufficient variation in θ and difference between b and a, the slope of the regression line of R̂
on θ̂ will have the same sign as b− a.

5.Empirical Application to the Household Pulse Survey

5.1 Background and Methodology

I now apply this test to real-world data drawn from the Household Pulse Survey (HPS),
an online-based survey aimed at measuring “various sectors impacted by COVID-19: em-
ployment status, consumer spending, food security, housing, education disruptions and di-
mensions of physical and mental wellness” (Callen, 2020). I will examine nonresponse bias as
it relates to estimates for the proportion of individuals with depression, anxiety, and at least
one shot of a COVID-19 vaccine in the HPS, variables that are likely plagued by nonresponse
bias (Dobson et al., 2022) (Bradley et al., 2021).

I use Phases 1-3.4 of the HPS, the New York Times COVID-19 deaths data, and data
on the percent of adults who have received their first shot of COVID-19 vaccine in each
state from the CDC. HPS data collection is broken into waves (referred to as “weeks”).
They are one week long in Phase 1 and two weeks long in the other phases. Using the
provided weights, I calculate the rates of anxiety and depression (as measured by the GAD-
2 and PHQ-2, respectively) at each state during each week using the provided weights. I
also calculate the average recorded employment rate (from the question “In the last 7 days,
did you do ANY work for either pay or profit?”) at the week-state level. Finally, I obtain
COVID-19 death data from the New York Times and vaccination data from the CDC in a
given state for the middle day of each Pulse week, and merge it with the collapsed/averaged
HPS dataset. More information on HPS data and the NYT COVID-19 data used can be
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found in Dobson et al. (2022).
Guided by theorem 2, I regress the weighted response rates of a state-week on the

observed proportion of individuals with anxiety, depression, or who have received at least
one COVID-19 vaccination shot in that state-week in HPS. I also use the true proportion
of individuals vaccinated from CDC data. I use a two-way fixed effects (TWFE) design and
control for the employment rate and COVID-19 deaths in the area in an attempt to control
for confounding variables. I also weight states based on their population size. This regression
is unlikely to fulfill many of the assumptions of our model and the assumptions needed to
draw a causal conclusion from a TWFE regression as outlined in Imai and Kim (2021). It’s
very unlikely that individuals have the same propensity to get anxiety/depression/vaccinated
or that anxiety/depression/vaccination affects everyone’s propensity to respond to the HPS
in the same way, which is what the i.i.d. assumption in my model implies.

Ideally, we would want to use an instrumental variable approach and find exogenous
variation in depression/anxiety/vaccination rates, but I was not able to find an instrument
that would fulfill the exclusion criterion and have variation across states and time periods.
Nonetheless, given that there currently does not exist any statistical method to estimate
nonresponse bias as it relates to PHQ-4 anxiety and depression measures in the HPS, I
believe that this paper presents a good starting point to begin tackling this difficult issue.
Investigating vaccination rates and nonresponse is also useful in two ways. The first is that
we already know the overall bias of our estimate since we know θ. The bias could be due
to sampling, nonresponse, or a mix of both. This regression will allow us to isolate the

nonresponse aspect of the bias. Secondly, since ∂E[θ̂]
∂θ

= b − a, we could obtain not just the
sign but the magnitude of the nonresponse bias.

5.2 Results

The results from the anxiety and depression regressions are not very convincing, espe-
cially given the movement in our coefficients as we add controls. My preferred specification
in both tables is column five. I conclude that we have some suggestive evidence that nonre-
sponse bias inflated estimates for the anxiety rates in the HPS.
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Table 1: Results from regressing state-week depression rates (as measured by PHQ-2) from
the HPS on the weighted response rates.

(1) (2) (3) (4) (5)
Weighted Response Rate

Obs. depression -0.0683*** -0.0281*** -0.0660*** 0.0093 0.0045
(0.0159) (0.0085) (0.0156) (0.0060) (0.0059)

COVID deaths per 100k 0.0017***
(0.0005)

Obs. employment -0.0100*
(0.0060)

Constant 0.0763*** 0.0452*** 0.0633*** 0.0226*** 0.0275***
(0.0037) (0.0021) (0.0049) (0.0023) (0.0038)

Observations 2,295 2,295 2,295 2,295 2,295
R-squared 0.0127 0.7837 0.1763 0.9499 0.9504
State FEs N N Y Y Y
Week FEs N Y N Y Y
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 2: Results from regressing state-week anxiety rates (as measured by GAD-2) from the
HPS on the weighted response rates.

(1) (2) (3) (4) (5)
Weighted Response Rate

Obs. anxiety -0.0193 0.0106 -0.0232* 0.0157*** 0.0118**
(0.0140) (0.0086) (0.0126) (0.0056) (0.0056)

COVID deaths per 100k 0.0016***
(0.0005)

Obs. employment -0.0090
(0.0060)

Constant 0.0654*** 0.0353*** 0.0529*** 0.0201*** 0.0246***
(0.0040) (0.0027) (0.0046) (0.0025) (0.0040)

Observations 2,295 2,295 2,295 2,295 2,295
R-squared 0.0014 0.7827 0.1690 0.9500 0.9505
State FEs N N Y Y Y
Week FEs N Y N Y Y
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 3 below shows us the results from vaccination rates, demonstrating how that
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higher vaccination rates are associated with lower response rates. Since the coefficients are
more stable, the signs of the slopes are always negative, and we have the true vaccination
rates, I am more confident that we have identified a causal relationship between vaccination
rates and response rates. My preferred specifications in the table are columns five and six.

Table 3: Results from regressing state-week vaccination rates as measured in the HPS (Obs.
Vax rates) and reported from the CDC (Actl. Vax rates) on the weighted response rates.
I use data from weeks 25-39 (inclusive). Data on vaccination status is not available before
week 25. After week 39 (the end of Phase 3.2 of HPS), vaccination rates in many states are
equal to the CDC cap of 95%, so I dropped them due to a lack of variance.

(1) (2) (3) (4) (5) (6)
Weighted Response Rate

Obs. vax rates -0.0136*** -0.0078 -0.0097*
(0.0033) (0.0053) (0.0054)

Actl. vax rates -0.0130*** -0.0163*** -0.0163***
(0.0030) (0.0042) (0.0047)

COVID deaths per 100k 0.0051*** 0.0051***
(0.0008) (0.0008)

Obs. employment -0.0068 -0.0065
(0.0074) (0.0072)

Constant 0.0755*** 0.0734*** 0.0584*** 0.0577*** 0.0581*** 0.0569***
(0.0024) (0.0018) (0.0014) (0.0010) (0.0045) (0.0042)

Observations 765 765 765 765 765 765
R-squared 0.0386 0.0394 0.9353 0.9366 0.9413 0.9424
State FEs N N Y Y Y Y
Week FEs N N Y Y Y Y
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

My findings demonstrate how nonresponse bias cause the HPS to underestimate the
true proportion of individual vaccinated: If we believe in all of the model’s assumptions,
then column six tells us that P (R = 1|D = 1) − P (R = 1|D = 0) = −0.0163. That
is, individuals who are vaccinated are 1.63 percentage points less likely to respond to the
survey than unvaccinated individuals. In reality, however, HPS overestimates vaccination
rates. How do we reconcile these two findings? I note that they can co-exist when there is
also sampling bias in the survey (see appendix B). The nonresponse bias pushes our estimate
in the negative direction, but the sampling bias pushes our estimate in the positive direction
such that we end up with a positive bias overall. We can see this in equation 4, where
b− a < 0 does not imply a certain sign on the bias of θ̃.

This also highlights the limitation of theorem 2, where we are only able to obtain the
sign of the overall bias of our estimator when there is no measurement error or sampling
bias, and the only bias comes from nonresponse.

Finally, I provide some intuition on the findings. Because the HPS is administered
online, I hypothesize that when individuals spend more time online, they are more likely
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to respond to the survey. Overall, it’s possible that being anxious increased the time spent
online, and that being vaccinated decreased time spent online (perhaps people went out
more).

6.Conclusion

In this paper, I write down and apply a new model of nonresponse bias that focuses on
signing nonresponse bias on a binary variable of interest D. I find that, given some strict
assumptions, the slope of a regression of response rates on observed prevalence of D in our
survey is exactly the sign of nonresponse bias, defined as P (R = 1|D = 1)−P (R = 1|D = 0).
I confirmed these findings through a simulation and applied the model to the Household Pulse
Survey. I find suggestive evidence that anxious individuals and non-vaccinated individuals
are more likely to respond to the HPS conditional on being sampled and that the difference
between vaccination rates in the HPS and reality is likely driven by sampling bias.
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Appendix A: Mathematical Appendix

Proof of lemma 1

Using the law of large numbers, we know that n−1
∑n

i=1 diri
p−→ E[DR] and n−1

∑n
i=1 ri

p−→
E[R] as n approaches infinity. By assumption E[R] > 0. Since f(x, y) = x

y
is a continuous

function when y ̸= 0, we can apply the continuous mapping theorem, and

plim

(
n−1

∑n
i=1 diri

n−1
∑n

i=1 ri

)
=

plim (n−1
∑n

i=1 diri)

plim (n−1
∑n

i=1 ri)

=
E[DR]

E[R]
= P (D = 1|R = 1)

Proof of lemma 2

θ̂
p−→ P (D = 1|R = 1) =

P (R = 1|D = 1)P (D = 1)

P (R = 1)

=
bθ

bθ + a(1− θ)

It follows immediately that θ̂
p−→ θ when a = b.

To see the second point, rewrite b = a+α and the probability limit of θ̂ as n approaches
infinity as γ. Thus we can interpret α as the degree of bias and take the partial w.r.t. α and
show that ∂γ

∂α
is strictly positive. That is, as α increases, γ increases. Since we know that γ

has no bias when α = 0, this implies that when b− a = α > 0, bias is positive.

sign
∂

∂α

(
(a+ α)θ

(a+ α)θ + a(1− θ)

)
= sign

(
θ · [(a+ α)θ + a(1− θ)]− (a+ α)θ2

)
= sign (aθ(1− θ))

which is always positive.

Appendix B: Extension to Sampling Bias

Previously, I assumed that there is no sampling bias. This is not always the case, and
Bradley et al. (2021) suggests that oversampling of Democrats in the HPS could be driving
the positive bias in vaccination rates.

Suppose the surveyor sample n individuals. Let S be the Bernoulli random variable
indicating if someone gets sampled. Bias from sampling occurs when P (D = 1|S = 1) ̸=
P (D = 1|S = 0). Analogous to section 2.1, I define β = P (S = 1|D = 1) and α = P (S =
1|D = 0). Once again, I assume that the data is independent and identically distributed

In a world with sampling bias, we have a new estimator

θ̃ =

∑N
i=1 dirisi∑N
i=1 risi
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where s1, s2...sN describes whether or not an individual has been sampled. Notice that we
are now iterating from 1 to N instead of 1 to n. We also have P (R = 1|S = 1) = bθ+a(1−θ)

as before, and R̃ =
∑N

i=1 risi∑N
i=1 si

with E[R̃] = P (R = 1|S = 1)

Lemma 3. θ̃
p−→ P (D = 1|S = 1 ∩R = 1)

Proof. Analogous to proof of lemma 1.

Lemma 4. Theorem 1 applies to sampling bias. Suppose we parameterize β and α as some
function of s, which is the total number of individuals sampled. Then, increasing the sample
size will reduce sampling bias if ∂β

∂s
− ∂α

∂s
< 0 and β−α > 0, but it may not if that condition

does not hold.

Proof. Analogous to proof in theorem 1. Note that

E[θ̃] =
P (S = 1 ∩R = 1|D = 1)P (D = 1)

P (S = 1 ∩R = 1)

=
b

bθ + a(1− θ)
· βθ

βθ + α(1− θ)

Thus the first term becomes a constant when we take the derivative, and the remaining logic
is identical to theorem 1

To simplify notation, I will use P (X) to indicate the probability that a given Bernoulli
random variable is equal to one, P (Y |X) to indicate P (Y = 1|X = 1), and P (X, Y ) to
indicate P (X ∩ Y ).

I now write down the bias of our new estimator:

E[θ̃ − θ] = P (D|S,R)− P (D) =
P (S,R|D)P (D)

P (S,R)
− P (S,R)P (D)

P (S,R)
(2)

=
P (D)

P (R|S)P (S)
[P (S,R|D)− P (S,R)] (3)

=
θ

[bθ + a(1− θ)][βθ + α(1− θ)]
× {bβθ − [bθ + a(1− θ)][βθ + α(1− θ)]} (4)

I now assume that P (S) remains constant. In other words, the number of individuals
sampled throughout the survey does not change. In the case of the HPS, this assumption
holds starting from Phase 2. We now investigate the relationship between response rates
and θ̃.

Theorem 3. Even if there is sampling bias in the survey, as long as the assumptions in
theorem 2 hold and P (S = 1) remains constant, the same linear regression of response rates
on θ̃ should have the same sign as b− a.
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Proof.

∂E[θ̃]

∂θ
=

P (S,R|D)P (S,R)− P (S,R|D)P (D)∂P (S,R)
∂P (D)

P (S,R)2

=
P (S,R|D)

P (S,R)2

[
P (R|S)P (S)− P (D)

∂P (R|S)P (S)

∂θ

]
=

P (S)P (S,R|D)

P (S,R)2

[
P (R|S)− P (D)

∂P (R|S)
∂θ

]
=

P (S)P (S,R|D)

P (S,R)2
[bθ + a(1− θ)− θ(b− a)]

=
P (S)P (S,R|D)

P (S,R)2
· a

which is always positive. Thus

∂E[R̃]

∂E[θ̃]
=

∂P (R=1|S=1)
∂θ

∂E[θ̃]
∂θ

=
b− a
∂E[θ̃]
∂θ

which retains the sign of b− a.

The reader can check that the expression ∂E[θ̃]
∂θ

is equivalent to the one is theorem 2
if S and R are independent, conditionally independent given D, and that S and D are
independent.

However, it is important to note that the nonresponse bias does not necessarily have
the same sign as the overall bias of our estimator. Looking at equation 4 for the bias of θ̃,
we see that b− a > 0 does not imply that E[θ̃ − θ] > 0.

Appendix C: Simulation Code and Results

Code:

#Tim Hua 2022

#Note: Even if you parallelize, this simulation can take a long time to run.

if (!require(tidyverse)) install.packages("tidyverse"); library(tidyverse)

if (!require(tictoc)) install.packages("tictoc"); library(tictoc)

if (!require(magrittr)) install.packages("magrittr"); library(magrittr)

if (!require(doParallel)) install.packages("doParallel"); library(doParallel)

#setwd("T:\\Middlebury\\OneDrive - Middlebury College\\Research\\Nonresponse")

set.seed(20220928)

n <- 2000 #Number sampled

gtUnits <- 500 #Number of geographical-time units.

b <- c(0.1,0.15,0.2,0.3)

abgap <- c(-0.2,-0.1,-0.05,0,0.05,0.1,0.2)

thetalower <- c(0.05,0.1,0.1,0.1,0.2)

thetaupper <- c(0.1,0.12,0.15,0.2,0.4)
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#Generate parameters for parallel calculations later

parlist = list()

for (i in b){

#for each possible b

for (j in abgap){

#for each possible difference

a <- i + j

for(k in 1:length(thetalower)){

if(a > 0.01){

parlist[[length(parlist) + 1]] <- c(i,a,thetalower[k],

thetaupper[k],

round(runif(1,0,1)*100000))

#The last term is for reproducibility and generates

#a fixed seed in each %dopar% enviornment

}

}

}

}

cores <- detectCores()

cl <- makeCluster(cores)

registerDoParallel(cl)

#TIME FOR PARALLELIZING

#I love dopar so much

oneparam = parlist[[90]]

tic()

output_w_boot <- foreach(oneparam = parlist,

.combine = ’rbind’) %dopar% {

#Faster version of as.data.frame

quickdf <- function(l) {

class(l) <- "data.frame"

attr(l, "row.names") <- .set_row_names(length(l[[1]]))

l

}

set.seed(oneparam[5])

NSIMULS <- 1000

slope_vec <- rep(NA,NSIMULS)

sig_vec <- rep(NA,NSIMULS)

slopecorrect_vec<-rep(NA,NSIMULS)

pval_vec <- rep(NA,NSIMULS)

sd_vec <- rep(NA,NSIMULS)

boot_sd_vec <- rep(NA,NSIMULS)

boot_ptil025 <- rep(NA,NSIMULS)

boot_ptil975 <- rep(NA,NSIMULS)
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for(i in 1:NSIMULS){

#A new simulation

thetahat_vec <- rep(NA,gtUnits)

Rhat_vec <- rep(NA,gtUnits)

for (l in 1:gtUnits){

#in each geographical-time area.

theta <- runif(1,oneparam[3],oneparam[4])

ndepInSample <- rbinom(1,n,theta)

ndepRespond <- rbinom(1,ndepInSample,oneparam[1])

nNotdepRespond <- rbinom(1,n-ndepInSample,oneparam[2])

thetahat_vec[l] <- ndepRespond/(ndepRespond + nNotdepRespond)

Rhat_vec[l] <- (ndepRespond + nNotdepRespond)/n

}

results <- summary(lm(Rhat_vec ~ thetahat_vec))

slope_vec[i] <- results$coefficients[[2,1]]

sig_vec[i] <- results$coefficients[[2,4]] < 0.05

slopecorrect_vec[i] <- sign(results$coefficients[[2,1]]

) == sign(oneparam[1]-oneparam[2])

pval_vec[i] <- results$coefficients[[2,4]]

sd_vec[i] <- results$coefficients[[2,2]]

#1000 times bootstrap resampling.

bootslopes <- rep(NA,1000)

gendf <- quickdf(list(Rhat = Rhat_vec, thetahat = thetahat_vec))

#quickdf saves like 58 microseconds

for (j in 1:1000){

bootdf <- gendf[sample.int(nrow(gendf), size = gtUnits, replace = T),]

#Using sample.int instead of slice_sample saves like 300ish microseconds

results <- summary(lm(Rhat ~ thetahat, data = bootdf))

bootslopes[j] <- results$coefficients[[2,1]]

}

boot_sd_vec[i] <- sd(bootslopes)

boot_ptil025[i] <- quantile(bootslopes,0.025)

boot_ptil975[i] <- quantile(bootslopes,0.975)

}

#Outputting summary stats:

tibble::tibble(b = oneparam[1], a = oneparam[2],

theta_range = paste0(as.character(oneparam[3]),"-",

as.character(oneparam[4])),

prop_correct = mean(slopecorrect_vec),

prop_sig = mean(sig_vec),

prop_sig_correct = mean(slopecorrect_vec[sig_vec]),

avg_slope = mean(slope_vec),

n_sims = length(slope_vec),
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avg_pval = mean(pval_vec),

avg_sigpval = mean(pval_vec[sig_vec]),

avg_sd = mean(sd_vec),

avg_boot_sd = mean(boot_sd_vec),

p_boot_lbp = mean(boot_ptil025 > 0),

#percent of lower bootstrap bound positive

p_boot_ubn = mean(boot_ptil975 < 0),

#percent of upper bootstrap bound negative

p_boot_sig_cor = ifelse(oneparam[1] == oneparam[2],0,

ifelse(oneparam[1] > oneparam[2],

p_boot_lbp/(p_boot_lbp + p_boot_ubn),

p_boot_ubn/(p_boot_lbp + p_boot_ubn)))

#percent bounds that are correct out of the significant ones

)

#I can afford to use a tibble here (runtime wise)

#since it only gets run 120 times

}

toc()

output_w_boot %<>% mutate(diff = b - a)

View(output_w_boot)

write_csv(output_w_boot,"sim_output_boot1.2.csv")

#bench::mark(

# as.data.frame = as.data.frame(list(Rhat = Rhat_vec,

# thetahat = thetahat_vec)),

# quick_df = quickdf(list(Rhat = Rhat_vec, thetahat = thetahat_vec))

#)[c("expression", "min", "median", "itr/sec", "n_gc")]

#bench::mark(

# bootdf = gendf[sample.int(nrow(gendf), size = gtUnits, replace = T),]

#)[c("expression", "min", "median", "itr/sec", "n_gc")]

#bench::mark(

# bootdf2 = slice_sample(gendf,n = gtUnits, replace = T)

#)[c("expression", "min", "median", "itr/sec", "n_gc")]

The actual results have 16 columns. I pick a eight notable ones to report here. All code and
data are available upon request.

b a theta range prop correct prop sig prop sig correct avg sd avg boot sd
0.1 0.05 0.05-0.1 0.977 0.475 1 0.005453 0.005463
0.1 0.05 0.1-0.12 0.608 0.066 0.833333 0.005882 0.005893
0.1 0.05 0.1-0.15 0.931 0.331 1 0.005122 0.005122
0.1 0.05 0.1-0.2 1 0.994 1 0.003971 0.003957
0.1 0.05 0.2-0.4 1 1 1 0.003163 0.00313
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0.1 0.1 0.05-0.1 0 0.03 0 0.012733 0.012727
0.1 0.1 0.1-0.12 0 0.053 0 0.013103 0.013118
0.1 0.1 0.1-0.15 0 0.057 0 0.01096 0.01097
0.1 0.1 0.1-0.2 0 0.054 0 0.007847 0.00783
0.1 0.1 0.2-0.4 0 0.052 0 0.004549 0.004538
0.1 0.15 0.05-0.1 0.908 0.24 1 0.021621 0.021605
0.1 0.15 0.1-0.12 0.606 0.064 0.734375 0.021817 0.021783
0.1 0.15 0.1-0.15 0.853 0.198 1 0.017912 0.017947
0.1 0.15 0.1-0.2 0.998 0.879 1 0.012584 0.012525
0.1 0.15 0.2-0.4 1 1 1 0.006452 0.006413
0.1 0.2 0.05-0.1 0.982 0.575 1 0.031678 0.031525
0.1 0.2 0.1-0.12 0.629 0.07 0.885714 0.031455 0.031439
0.1 0.2 0.1-0.15 0.97 0.489 1 0.025833 0.025741
0.1 0.2 0.1-0.2 1 0.999 1 0.018034 0.017883
0.1 0.2 0.2-0.4 1 1 1 0.008739 0.008652
0.1 0.3 0.05-0.1 1 0.966 1 0.053979 0.053389
0.1 0.3 0.1-0.12 0.762 0.119 0.966387 0.052635 0.052443
0.1 0.3 0.1-0.15 0.999 0.937 1 0.043606 0.043224
0.1 0.3 0.1-0.2 1 1 1 0.030608 0.03002
0.1 0.3 0.2-0.4 1 1 1 0.014385 0.014091
0.15 0.05 0.05-0.1 1 0.978 1 0.004837 0.004817
0.15 0.05 0.1-0.12 0.745 0.098 0.979592 0.005737 0.005744
0.15 0.05 0.1-0.15 1 0.91 1 0.005009 0.004981
0.15 0.05 0.1-0.2 1 1 1 0.003927 0.003869
0.15 0.05 0.2-0.4 1 1 1 0.003817 0.003716
0.15 0.1 0.05-0.1 0.947 0.38 1 0.010387 0.010376
0.15 0.1 0.1-0.12 0.619 0.055 0.745455 0.011772 0.011781
0.15 0.1 0.1-0.15 0.923 0.313 1 0.00956 0.009538
0.15 0.1 0.1-0.2 1 0.962 1 0.006708 0.006683
0.15 0.1 0.2-0.4 1 1 1 0.004447 0.004432
0.15 0.15 0.05-0.1 0 0.074 0 0.017062 0.017016
0.15 0.15 0.1-0.12 0 0.063 0 0.018862 0.018916
0.15 0.15 0.1-0.15 0 0.051 0 0.014956 0.014955
0.15 0.15 0.1-0.2 0 0.061 0 0.01009 0.010085
0.15 0.15 0.2-0.4 0 0.058 0 0.005637 0.005622
0.15 0.2 0.05-0.1 0.876 0.23 0.995652 0.024452 0.024396
0.15 0.2 0.1-0.12 0.576 0.052 0.826923 0.026652 0.026674
0.15 0.2 0.1-0.15 0.865 0.188 0.994681 0.020944 0.02093
0.15 0.2 0.1-0.2 0.999 0.847 1 0.0139 0.013851
0.15 0.2 0.2-0.4 1 1 1 0.007107 0.007079
0.15 0.25 0.05-0.1 0.992 0.609 1 0.032533 0.032352
0.15 0.25 0.1-0.12 0.654 0.07 0.942857 0.035091 0.035068
0.15 0.25 0.1-0.15 0.981 0.572 1 0.027363 0.027297
0.15 0.25 0.1-0.2 1 1 1 0.01803 0.017909
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0.15 0.25 0.2-0.4 1 1 1 0.008747 0.008667
0.15 0.35 0.05-0.1 1 0.983 1 0.049712 0.049358
0.15 0.35 0.1-0.12 0.775 0.11 0.954545 0.052579 0.052581
0.15 0.35 0.1-0.15 1 0.957 1 0.041309 0.040977
0.15 0.35 0.1-0.2 1 1 1 0.027276 0.026907
0.15 0.35 0.2-0.4 1 1 1 0.012665 0.012508
0.2 0.1 0.05-0.1 1 0.919 1 0.009121 0.009097
0.2 0.1 0.1-0.12 0.729 0.094 0.978723 0.011112 0.0111
0.2 0.1 0.1-0.15 0.998 0.823 1 0.008928 0.00891
0.2 0.1 0.1-0.2 1 1 1 0.006252 0.006226
0.2 0.1 0.2-0.4 1 1 1 0.004691 0.004632
0.2 0.15 0.05-0.1 0.913 0.303 1 0.014503 0.014459
0.2 0.15 0.1-0.12 0.626 0.058 0.672414 0.017267 0.017274
0.2 0.15 0.1-0.15 0.894 0.258 1 0.013338 0.013309
0.2 0.15 0.1-0.2 1 0.921 1 0.00887 0.008828
0.2 0.15 0.2-0.4 1 1 1 0.005446 0.005441
0.2 0.2 0.05-0.1 0 0.062 0 0.020459 0.020442
0.2 0.2 0.1-0.12 0 0.042 0 0.024029 0.023979
0.2 0.2 0.1-0.15 0 0.057 0 0.018315 0.018285
0.2 0.2 0.1-0.2 0 0.054 0 0.011796 0.011799
0.2 0.2 0.2-0.4 0 0.05 0 0.006441 0.006426
0.2 0.25 0.05-0.1 0.893 0.245 1 0.026913 0.026811
0.2 0.25 0.1-0.12 0.568 0.063 0.793651 0.031121 0.031163
0.2 0.25 0.1-0.15 0.865 0.203 1 0.023518 0.023498
0.2 0.25 0.1-0.2 0.998 0.806 1 0.014991 0.014972
0.2 0.25 0.2-0.4 1 1 1 0.007636 0.007604
0.2 0.3 0.05-0.1 0.99 0.643 1 0.033626 0.033525
0.2 0.3 0.1-0.12 0.674 0.066 0.954545 0.03865 0.038565
0.2 0.3 0.1-0.15 0.982 0.568 1 0.028963 0.028841
0.2 0.3 0.1-0.2 1 1 1 0.018355 0.0183
0.2 0.3 0.2-0.4 1 1 1 0.008932 0.008894
0.2 0.4 0.05-0.1 1 0.989 1 0.047348 0.047107
0.2 0.4 0.1-0.12 0.793 0.133 0.984962 0.053654 0.053592
0.2 0.4 0.1-0.15 1 0.97 1 0.040252 0.039956
0.2 0.4 0.1-0.2 1 1 1 0.025553 0.025354
0.2 0.4 0.2-0.4 1 1 1 0.011861 0.011757
0.3 0.1 0.05-0.1 1 1 1 0.007876 0.007828
0.3 0.1 0.1-0.12 0.885 0.277 1 0.010765 0.010745
0.3 0.1 0.1-0.15 1 1 1 0.008599 0.008503
0.3 0.1 0.1-0.2 1 1 1 0.006076 0.00598
0.3 0.1 0.2-0.4 1 1 1 0.005646 0.005534
0.3 0.2 0.05-0.1 0.997 0.812 1 0.016152 0.016109
0.3 0.2 0.1-0.12 0.72 0.092 0.945652 0.021202 0.021142
0.3 0.2 0.1-0.15 0.993 0.7 1 0.015458 0.015435
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0.3 0.2 0.1-0.2 1 1 1 0.009836 0.009821
0.3 0.2 0.2-0.4 1 1 1 0.00621 0.006184
0.3 0.25 0.05-0.1 0.911 0.238 1 0.020796 0.020734
0.3 0.25 0.1-0.12 0.565 0.06 0.666667 0.026907 0.026838
0.3 0.25 0.1-0.15 0.873 0.234 0.995726 0.019281 0.019229
0.3 0.25 0.1-0.2 0.999 0.837 1 0.011992 0.011956
0.3 0.25 0.2-0.4 1 1 1 0.006821 0.006812
0.3 0.3 0.05-0.1 0 0.051 0 0.025485 0.025492
0.3 0.3 0.1-0.12 0 0.041 0 0.032761 0.03273
0.3 0.3 0.1-0.15 0 0.056 0 0.023187 0.02318
0.3 0.3 0.1-0.2 0 0.039 0 0.014181 0.01417
0.3 0.3 0.2-0.4 0 0.052 0 0.00757 0.007561
0.3 0.35 0.05-0.1 0.887 0.215 0.990698 0.030343 0.030213
0.3 0.35 0.1-0.12 0.638 0.065 0.707692 0.038569 0.038478
0.3 0.35 0.1-0.15 0.868 0.197 0.994924 0.027235 0.027142
0.3 0.35 0.1-0.2 0.998 0.764 1 0.01649 0.016449
0.3 0.35 0.2-0.4 1 1 1 0.008368 0.00836
0.3 0.4 0.05-0.1 0.992 0.658 1 0.035135 0.035051
0.3 0.4 0.1-0.12 0.71 0.071 0.915493 0.04455 0.044379
0.3 0.4 0.1-0.15 0.981 0.599 1 0.03127 0.03118
0.3 0.4 0.1-0.2 1 1 1 0.018779 0.018705
0.3 0.4 0.2-0.4 1 1 1 0.009228 0.009185
0.3 0.5 0.05-0.1 1 0.999 1 0.044396 0.044173
0.3 0.5 0.1-0.12 0.837 0.147 0.986395 0.055573 0.05551
0.3 0.5 0.1-0.15 1 0.982 1 0.03914 0.038837
0.3 0.5 0.1-0.2 1 1 1 0.023424 0.023383
0.3 0.5 0.2-0.4 1 1 1 0.011063 0.01101
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